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Abstract
In this paper, we study the degree of approximation of function in Besov space using Euler Hausdorff

product means of Fourier Series and we also deduce some corollaries of our main result.
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1 Introduction
In the last few decades several researchers have studied the degree of approximation of function in Lipschitz
class and Hölder space has been studied by [1,2,3,6,7] using different product summability means of Fourier
series on Conjugate Fourier also. Besov space describes the smoothness properties of functions and contain
many fundamental spaces such as Lipschitz space, Hölder space, etc. Mohanty et al. [4], Mohanty et al. [5],
Nigam et al. [8] studied the approximation function in Besov space by various summability means of their
Fourier series. In the present work , we obtain the degree of approximation of function in Besov space using
Euler Hausdorff product means.

2 Definitions and Notations
Let C2π = C[0, 2π] denotes the Banach space of all 2π- periodic continuous functions f defined on [0, 2π]
under the sup norm, and

Lp = Lp[0, 2π] = {f : [0, 2π]→ R;

∫ 2π

0

|f(x)|pdx <∞}, p ≥ 1,

be the space of all 2π- periodic integrable functions. The Lp- norm of function f is defined by

‖f‖p :=


(

1
2π

∫ 2π

0
|f(x)|pdx

) 1
p

, 1 ≤ p <∞
ess sup0<x≤2π |f(x)|, p =∞.

The kth order modulus of smoothness of signal f ∈ Lp, 0 < p ≤ ∞ is defined by
ωk(f, t)p = sup

0<h≤t

∥∥∇kh(f, ·)
∥∥
p′

where δkh(f, x) =
∑k
i=0(−1)k−i

(
k
i

)
f(x + ih), k ∈ N. For p = ∞, k = 1 and a continuous function f , the

modulus of smoothness ωk(f, t)p reduces to the modulus of continuity ω(f, t) also for 0 < p <∞ and k = 1
ωk(f, t)p becomes the integral modulud of continuity ω(f, t)p.
2.1 Lipschitz Space
If a function f ∈ C2π and ω(f, t) = O(tα), 0 < α ≤ 1 then f ∈ Lip α. If a function f ∈ Lp, 0 < p <∞ and
ω(f, t)p = O(tα), 0 < α ≤ 1 then f ∈ Lip(α, p). For p =∞, the class Lip(α, p) reduces to the class Lip α.

Let α > 0 be given and let k denote the smallest integer k > α that is, k = [α] + 1. For f ∈ Lp, if
ωk(f, t)p = O(tα), t > 0. Then the seminorm is

|f |Lip∗(α,p) = sup
t>0

(tαωk(f, t)p)

Thus Lip(α, p) ⊆ Lip∗(α, p).
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2.2 Hölder Space
For 0 < α ≤ p, let Hα = {f ∈ C2π : ω(f, t)} = O(tα). It is known that Hα is a Banach space with norm

‖f‖α = ‖f‖c + sup
t>0

(t−αω(t)), and ‖f‖0 = ‖f‖c
and Hα ⊆ Hβ ⊆ C2π for 0 < β ≤ α ≤ 1. The metric induced by the norm ‖·‖α on Hα is call the Hölder
metric.

For 0 < α ≤ 1 and 0 < p ≤ ∞, let

Hα,p := Hα,p[0, 2π] = {f ∈ C2π : ω(f, t)p = ◦(tα)}
with the norm ‖·‖α,p defined as follows:

‖f‖α,p = ‖f‖p + sup
t>0

(t−αω(f, t)p), for 0 < α ≤ 1 and ‖f‖0,p = ‖f‖p
then Hα,p is a Banach space for p ≥ 1 and a complete p-normed space for 0 < p < 1.

For
Hα,p ⊆ Hβ,p ⊆ Lp, for 0 < β ≤ α ≤ 1.

2.3 Besov Space
Let α > 0 be given, and let k = [α] + 1. For 0 < p, q ≤ ∞, the Besov space Bαq (Lp) is the collection of all
the 2π- periodic function f ∈ Lp such that

|f |Bαq (Lp) := ‖ωk(f, ·)‖α,q =

{ (∫ π
0

[t−αω(f, t)p]
q dt
t

) 1
q , 0 < q <∞

supt>0(t−αω(f, t)p), q =∞
is finite. It is known that above relation is a semi-norm if 1 ≤ p, q ≤ ∞, and a quasi-norm in other case.
The quasi-norm for Bαq (Lp) is

‖f‖Bαq (Lp) := ‖f‖p + |f |Bαq (Lp) = ‖f‖p + ‖ωk(f, ·)‖α,q .
For q 6=∞, Bαq (Lp) = Lip∗(α, p). When 0 < α < 1, the space Bαq (Lp) reduce to Hα,p and we take p = q =∞
and 0 < α < 1, the besov space reduce to the Hα.

We write through the paper

ϕ(x, t, u) =

{
ϕx+t(u)− ϕx(t), 0 < α < 1

ϕx+t(u) + ϕx−t(u)− 2ϕx(u), 0 ≤ α < 2.

Theorem 2.1. The Hausdroff matrix summability transform of sk(f ;x) by tHn (x), we get

tHn (x) =

n∑
k=0

hn,ksk(f ;x).

The (E, q) transform of tHn denoted by KEH
n is given by

KEH
n = (1 + q)−n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

hn,ksk(f ;x)

and

Mn(u) =
(1 + q)−n

2π

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0

(
k

v

)
zv(1− z)k−vdα(z)

sin
(
v + 1

2

)
u

sin u
2

du.

3 Main Theorem
Let f be 2π-periodic functions and Lebsesgue integrable for 0 ≤ β < α < 2. The best error approximation
of f in the Besov space Bαq (Lp) p ≥ 1, 1 < q ≤ ∞ by KEH

n transform of its Fourier series is given by

En(f) =
∥∥TEHn (·)

∥∥
Bαq (Lp)

= O(1)


(n+ 1)−1, α− β − q−1 > 1

(n+ 1)−α+β+q−1

, α− β − q−1 < 1

(n+ 1)−1[log(n+ 1)π]1−q
−1

, α− β − q−1 = 1.

ϕ
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4 Lemmas
We need following lemmas in the proof of our main result.

Lemma 4.1. ([1]) |Mn(u)| = O(n+ 1), for 0 ≤ u ≤ 1
(n+1) .

Lemma 4.2. ([1]) |Mn(u)| = O((n+ 1)−1u−2) for 1
(n+1) ≤ u ≤ π.

Lemma 4.3. ([4]) Let 1 ≤ p ≤ ∞, and 0 < α < 2. If f ∈ Lp then for 0 < t, u ≤ π
(i) ‖ϕ(·, t, u)‖p ≤ 4ωk(f, t)p

(ii) ‖ϕ(·, t, u)‖p ≤ 4ωk(f, u)p,
(iii) ‖ϕ(u)‖ ≤ 2ωk(f, u)p,

where k = [α] + 1.

Lemma 4.4. ([4]) Let 0 < β < α < 2. If f ∈ Bαq (Lp), p ≥ 1, 1 < 1 <∞, then∫ π

0

|Mn(u)|
(∫ u

0

‖ϕ(·, t, u)‖qp
tβq

dt

t

) 1
q

= O(1)

{∫ π

0

(uα−β |Mn(u)|) q
q−1 du

}1− 1
q

= O(1)

{∫ π

0

(
uα−β+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

.

Lemma 4.5. ([4]) Let 0 ≤ β < α < 2 and f ∈ Bαq (Lp), p ≥ 1, q =∞ then

sup
0<t,u≤π

(t−β ‖ϕ(·, t, u)‖p) = O(uα−β).

Lemma 4.6. (i) Nn(y, t) =
∫ π

0
Mn(u)φ(y, t, u),

(ii) ωk(Tr, t) = ‖Nn(·, t)‖p.

5 Proof of the Main theorem
5.1 Case I:
For 1 < q <∞, p ≥ 1, 0 ≤ β < α < 2.

Proof. We have

sk(f ;x)− f(x) =
1

2π

∫ π

0

ϕ(x, t)
sin
(
k + 1

2

)
t

sin t
2

dt.

The Hausdorff matrix summability transform of sk(f ;x) by tHn (x), we get

tHn (x)− f(x) =

n∑
k=0

hn,k{sk(f ;x)− f(x)}

=
1

2π
ϕ(x, t)

n∑
k=0

(
n

k

)
∆n−k

(∫ 1

0

zkdα(z)

)
sin
(
k + 1

2

)
t

sin t
2

dt

=
1

2π
ϕ(x, t)

n∑
k=0

∫ 1

0

(
n

k

)
zk(1− z)n−kdα(z)

sin
(
k + 1

2

)
t

sin t
2

dt. (5.1)

The (E, q) transform of tHn denoted by KEH
n is given by

KEH
n − f(x) = (1 + q)−n

n∑
k=0

(
n

k

)
qn−k{tHn (x)− f(x)}

= (1 + q)−n
n∑
k=0

(
n

k

)
qn−k

{
1

2π

∫ π

0

ϕ(x, t)

k∑
v=0

∫ 1

0

(
k

v

)
zv(1− z)k−vdα(z)

sin
(
v + 1

2

)
t

sin
(
t
2

) dt

}

= (1 + q)−n
n∑
k=0

(
n

k

)
qn−k

{
1

2π

∫ π

0

ϕ(x, u)

k∑
v=0

∫ 1

0

(
k

v

)
zv(1− z)k−vdα(z)

sin
(
v + 1

2

)
u

sin
(
u
2

) du

}
( Replacing t by u)
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=

∫ π

0

ϕx(u)Mn(u)dt. (5.2)

Let

Tn(x) = KEH
n (x)− f(x) =

∫ π

0

ϕ(x, u)Mn(u)dt. (5.3)

Using the definition of Besov norm, we have

‖f‖Bαq (Lp) : = ‖f‖p + |f |Bαq (Lp) = ‖f‖p + ‖ωk(f, ·)‖α,q .
‖Tn(·)‖Bβq (Lp) = ‖Tn(·)‖p + ‖ωk(Tn, ·)‖β,q . (5.4)

Using Lemma 4.3(iii), we get

‖Tn(·)‖p ≤
∫ π

0

‖ϕ(u)‖p |Mn(u)|du ≤
∫ π

0

2ωk(f, u)p|Mn(u)|du. (5.5)

Employing Hölder inequality, we have

‖Tn(·)‖p ≤ 2

{∫ π

0

(
uα+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q
{∫ π

0

(
ωk(f, u)p

uα+ 1
q

)q
du

} 1
q

.

Making an appeal to Besov space definition , we establish

‖Tn(·)‖p = O(1)

{∫ π

0

(
uα+ 1

q |Mn(u)|
) q
q−1

}1− 1
q

= O(1)

O(1)

{∫ 1
n+1

0

(
uα+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

+ O(1)


{∫ π

1
n+1

(
uα+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q




= O(1)(E +H). (5.6)

Using Lemma 4.1 in E of (5.6), we attain

E =

{∫ 1
n+1

0

(
uα+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

O

{∫ 1
n+1

0

(
uα+ 1

q (n+ 1)
) q
q−1

du

}1− 1
q

=

{
(n+ 1)

q
q−1

∫ 1
n+1

0

(
uα+ 1

q

)
du

}1− 1
q

= O(n+ 1)−α. (5.7)

Emplying Lemma 4.2 in H of (5.6), we derive

H =

{∫ π

1
n+1

(
uα+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

=

{∫ π

1
n+1

(
uα+ 1

q
1

(n+ 1)u2

) q
q−1

du

}1− 1
q

=

{∫ π

1
n+1

(
uα+ 1

q−2 1

(n+ 1)

) q
q−1

du

}1− 1
q

= O(n+ 1)−1

{∫ π

1
n+1

u
q
q−1 (α−1)−1du

}1− 1
q

O(1)


(n+ 1)−1, α > 1

(n+ 1)−α, α < 1

(n+ 1)−1[log(n+ 1)π]1−q
−1

α = 1.

(5.8)
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So, we get

‖Tn(·)‖p = O(1)


(n+ 1)−1, α > 1

(n+ 1)−α, α < 1

(n+ 1)−1[log(n+ 1)π]1−q
−1

α = 1.

(5.9)

By using generalized Minkowskis inequality and Lemma 4.4, we have

‖ωk(Tn, ·)‖ =

{∫ π

0

(
ωk(Tn, t)p

tβ

)q
dt

t

} 1
q

=

{∫ π

0

(‖Nn(·, t)‖p
tβ

)q
dt

t

} 1
q

=

∫ π

0

|Mn(u)|du
{∫ u

0

‖ϕ(·, t, u)‖qp
tβq

dt

t

} 1
q

+

∫ π

0

|Mn(u)|du
{∫ π

u

‖ϕ(·, t, u)‖qp
tβq

dt

t

} 1
q

= O(1)

{∫ π

0

(uα−β |Mn(u)| q
q−1 )du

}1− 1
q

+ O(1)

{∫ π

0

(uα−β+ 1
q |Mn(u)| q

q−1 )du

}1− 1
q

= O(1)(E1 +H1). (5.10)

Now, (a+ b)r ≤ ar + br for positive a, b and 0 < r ≤ 1 for r = 1− 1
q < 1. we have

E1 =

{∫ π

0

(uα−β |Mn(u)| q
q−1 )du

}1− 1
q

≤
{(∫ 1

n+1

0

+

∫ π

1
n+1

)
(uα−β |Mn(u)|) q

q−1

}1− 1
q

= E11 + E12. (5.11)

Using Lemma 4.1, we have

E11 =

{∫ 1
n+1

0

(uα−β |Mn(u)|) q
q−1 du

}1− 1
q

=

{∫ 1
n+1

0

(uα−β(n+ 1))
q
q−1 du

}1− 1
q

= O
{

(n+ 1)−α+β+ 1
q

}
. (5.12)

Using Lemma 4.2 in E12, we have

E12 =

{∫ π

1
n+1

(uα−β |Mn(u)|) q
q−1 du

}1− 1
q

=

{∫ π

1
n+1

(
uα−β

1

(n+ 1)u2

) q
q−1

du

}1− 1
q

= O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+ 1
q , α− β − 1

q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(5.13)

Combining (5.11)(5.12) and (5.13), we establish

E1 = O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+ 1
q , α− β − 1

q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(5.14)
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Now,

H1 =

{∫ π

0

(
uα−β+ 1

q |Mn(u)|
) q
q−1

}1− 1
q

≤
{(∫ 1

n+1

0

+

∫ π

1
n+1

)(
uα−β+ 1

q |Mn(u)|
) q
q−1

}1− 1
q

= H11 +H12. (5.15)

Using Lemma 4.1 in H11, we derive

H11 =

{∫ 1
n+1

0

(
uα−β+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

=

{∫ 1
n+1

0

(
uα−β+ 1

q (n+ 1)
) q
q−1

du

}1− 1
q

= O{(n+ 1)−α+β}. (5.16)

Using Lemma 4.2 in H12, we obtain

H12 =

{∫ π

1
n+1

(
uα−β+ 1

q |Mn(u)|
) q
q−1

du

}1− 1
q

=

{∫ π

1
n+1

(
uα−β+ 1

q
1

(n+ 1)u2

) q
q−1

du

}1− 1
q

= O(1)


(n+ 1)−1, α− β > 1

(n+ 1)−α+β , α− β < 1

(n+ 1)−1[log(n+ 1)π]1−q
−1

, α− β = 1.

. (5.17)

Combining (5.15), (5.16) and (5.17), we get

H1 = O(1)


(n+ 1)−1, α− β > 1

(n+ 1)−α+β , α− β < 1

(n+ 1)−1[log(n+ 1)π]1−q
−1

, α− β = 1.

. (5.18)

From (5.10), (5.14) and (5.18), we obtain

‖ωk(Tn, ·)‖β,q = O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+ 1
q , α− β − 1

q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(5.19)

From (5.4), (5.9) and (5.19), we derive

‖Tn(·)‖Bβq (Lp) = O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+ 1
q , α− β − 1

q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(5.20)

5.2 Case II
For q =∞, 0 ≤ β < α < 2.

‖Tn(·)‖Bβ∞(Lp) = ‖Tn(·)‖p + ‖ωk(Tn, ·)‖β,∞ . (5.21)

Using condition ωk(f, t) = O(tα), t > 0 in (5.5), we have

‖Tn(·)‖p =

∫ 2π

0

2ωk(f, u)|Mn(u)|du

= O(1)

{∫ 1
n+1

0

|Mn(u)|uαdu+

∫ π

1
n+1

|Mn(u)|uαdu
}
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= O(1)[E2 +H2]. (5.22)

Applying Lemma 4.1, we have

E2 =

∫ 1
n+1

0

|Mn(u)|uαdu

≤
∫ 1

(n+1)

0

uα(n+ 1)du

= (n+ 1)−α. (5.23)

Using Lemma 4.2, we derive

H2 =

∫ π

1
n+1

|Mn(u)|uαdu

≤ 1

n+ 1

∫ π

1
n+1

uα
1

u2
du

=


(n+ 1)−1, α > 1

(n+ 1)−α, α < 1

(n+ 1)−1[log(n+ 1)π], α = 1.

(5.24)

An appeal to (5.22), (5.23) and (5.24), gives

‖Tn(·)‖p = O(1)


(n+ 1)−1, α > 1

(n+ 1)−α, α < 1

(n+ 1)−1[log(n+ 1)π], α = 1.

(5.25)

Making an appeal to generalized Minkowaskis inequality and Lemma 4.6, we derive

‖ωk(Tn, ·)‖β,q = sup
t>0

(t−βωk(Tn, t)p)

= sup
t>0

(t−β ‖Nn(·, t)‖p)

= sup
t>0

[
t−β

(
1

2π

∫ 2π

0

|Mn(u)||ϕ(x, t, u)du|pdx
) 1
p

]

= sup
t>0

[
t−β

(
1

2π

)p ∫ 2π

0

{|Mn(u)|p|ϕ(x, t, u)|pdx} 1
p du

]
=

∫ π

0

(
sup
t>0

t−β ‖ϕ(·, t, u)‖p
)
|Mn(u)|du

= O(1)

∫ π

0

uα−β |Mn(u)|du

= O(1)

[(∫ 1
n+1

0

+

∫ π

1
n+1

)
uα−β |Mn(u)|du

]
= O(1)(E3 +H3). (5.26)

Using Lemma 4.1 in E3, we have

E3 =

∫ 1
n+1

0

uα−β |Mn(u)|du = O{(n+ 1)α−β}. (5.27)

Making an appeal to Lemma 4.2 in H3, we derive

H3 =

∫ π

1
n+1

uα−β |Mn(u)|du

= O(1)
1

n+ 1

∫ π

1
n+1

uα−β−2du
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= O(1)


(n+ 1)−1, α− β > 1

(n+ 1)−α−β , α− β < 1

(n+ 1)−1[log(n+ 1)π], α− β = 1.

(5.28)

An appeal to (5.26), (5.27) and (5.28) gives

‖ωk(Tn, ·)‖β,∞ = O(1)


(n+ 1)−1, α− β > 1

(n+ 1)−α−β , α− β < 1

(n+ 1)−1[log(n+ 1)π], α− β = 1.

(5.29)

Emplying (5.21), (5.25) and (5.29), we establish

‖Tn(·)‖Bβ∞(Lp) = O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+ 1
q , α− β − 1

q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(5.30)

6 Some Proposition
The following corollary can be derived from our main theorem.

Corollary 6.1. The best Error approximation of f in the Besov space Bαq (Lp), p ≥ 1, 1 < q ≤ ∞, by
(E, q)(C, δ) means of its Fourier series is given by

En(f) = ‖Tn(·)‖Bαq (Lp) = O(1)


(n+ 1)−1, α− β − 1

q > 1,

(n+ 1)−α+β+q−1

, α− β − 1
q < 1,

(n+ 1)−1 log[(n+ 1)π]1−q
−1

α− β − 1
q = 1.

(6.1)

Remark 6.1. Corollary 6.1 can be further reduce in (E, 1)(C, δ) means, (E, q)(C, 1) means and (E, 1)(C, 1)
means.

7 Conclusion
Many researchers use various summability means to obtain the degree of approximation of functions in various
spaces such as Lipschitz space, Hölder space etc. Because the Besov space generalizes to more elementary
function, this space is very effective at measuring the regularity of functions. Our result generalizes many
known results obtained using the Lipschitz space.
Acknowledgement. Author would like to express their deep gratitude to Editors and Reviewers for their
valuable suggestion, to bring the paper in present form.
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