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Abstract
In this paper, we study the degree of approximation of function in Besov space using Euler Hausdorff
product means of Fourier Series and we also deduce some corollaries of our main result.
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1 Introduction

In the last few decades several researchers have studied the degree of approximation of function in Lipschitz
class and Holder space has been studied by [1,2,3,6,7] using different product summability means of Fourier
series on Conjugate Fourier also. Besov space describes the smoothness properties of functions and contain
many fundamental spaces such as Lipschitz space, Holder space, etc. Mohanty et al. [4], Mohanty et al. [5],
Nigam et al. [8] studied the approximation function in Besov space by various summability means of their
Fourier series. In the present work , we obtain the degree of approximation of function in Besov space using
Euler Hausdorff product means.

2 Definitions and Notations
Let Car = C[0,27] denotes the Banach space of all 27- periodic continuous functions f defined on [0, 27]
under the sup norm, and

27
L, = Ly[0.27] = {f : [0,20] = R; / F@)Pdz < co},p > 1,

0
be the space of all 27- periodic integrable functions. The L,- norm of function f is defined by

Ifll, = (i 027T|f(x)|pd93>B , 1<p<oo
b
es$SUPgcy<ar |f(2)],  p=o00.

The k** order modulus of smoothness of signal f € L,,0 < p < oo is defined by
wi(ft)py = sup [|Vi(f,")
0<h<t

where §F(f,x) = Zfzo(—l)k_i(lz)f(x +ih),k € N. For p = 0o,k = 1 and a continuous function f, the
modulus of smoothness wg(f,t), reduces to the modulus of continuity w(f,t) also for 0 < p < oo and k =1
wi(f,t), becomes the integral modulud of continuity w(f,t),.
2.1 Lipschitz Space
If a function f € Cyr and w(f,t) = O(t*),0 < a <1 then f € Lip «. If a function f € L,, 0 < p < oo and
w(f,t)p = O(t*), 0 < a <1 then f € Lip(c,p). For p = o0, the class Lip(c, p) reduces to the class Lip «.

Let o > 0 be given and let k& denote the smallest integer k¥ > « that is, k = [a] + 1. For f € L,, if
wr(f,t)p = O(t*),t > 0. Then the seminorm is

|f|Lip*(a,p) = Sup(tawk(fa t)p)
t>0

l

Thus Lip(a, p) C Lip*(a, p).

254



2.2 Holder Space
For 0 < a < p,let H, ={f € Cor : w(f,t)} = O(t*). It is known that H, is a Banach space with norm

[flle = 17Nl +sup(E™w(#)), and [|f]lo = [ f].
t>0

and Hy, C Hg C Cy, for 0 < f < a < 1. The metric induced by the norm ||-||, on Hy is call the Holder
metric.
For0<a<1landO0<p<oo,let

Hap = Hqpl0,27] = {f € Cor : w(f,t)p = o(t*)}

with the norm ||-[|, , defined as follows:
1110y = 171, Sup(t~(£.2)), for 0.< o < Land £, = 11,

then H, , is a Banach space for p > 1 and a complete p-normed space for 0 < p < 1.
For
HopCHgp CLy for0<pg<a<l.

2.3 Besov Space
Let o > 0 be given, and let k = [a] + 1. For 0 < p,q < oo, the Besov space Bg(L,) is the collection of all
the 27- periodic function f € L, such that

1
T, dt\q
tTw(f,t),]9% ), 0<qg< o0
Flsg ey = leon(s )y = { U [, 175) “
Supt>0(t w(f’ t)P)v q =00
is finite. It is known that above relation is a semi-norm if 1 < p,q < oo, and a quasi-norm in other case.
The quasi-norm for B (L) is
1l Ba iz, = 11, + g,y = NI, + leon(Fs o,

For q # oo, Bf(Ly) = Lip*(a,p). When 0 < a < 1, the space By (Ly,) reduce to H, , and we take p = ¢ = 00
and 0 < a < 1, the besov space reduce to the H,,.
We write through the paper

— 1
<p(ac7t,u) — <p$+t(u) @m(t)7 0<a<
Oart(u) + @ot(u) = 2p2(u), 0<a<2.

Theorem 2.1. The Hausdroff matriz summability transform of si(f;x) by tH (), we get

tf(m) = Z b kesk(f; ).
k=0

The (E,q) transform of t& denoted by KE™ is given by

n

k
KE = ()3 ()0 Rl i)
v=0

k=0
and

- B Qe [ (e

k=0 2

3 Main Theorem

Let f be 2m-periodic functions and Lebsesgue integrable for 0 < 8 < o < 2. The best error approximation

of f in the Besov space B (L,) p > 1,1 < g < 0o by KFEH transform of its Fourier series is given by
(n+1)71 a—f—qt>1

=0(1)S (n+1)"atbra a-f-q <1
(n+ 1) ogn+r]=", a—B—q¢ =1

o) = T Ollpg
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4 Lemmas
We need following lemmas in the proof of our main result.

Lemma 4.1. ([1]) |[M,(u)] = O(n+1), for 0 <u < (n+1)

<u<m.

Lemma 4.2. ([1]) |M,(u)| = O((n+1)"'u"2) for iy <

Lemma 4.3. ([4]) Let 1 <p<oo, and 0 <a <2. If f € L, then for 0 <t,u<m
(1) (st w)l, < 4wi(f,t)p

(i) llo(- ¢, )H < dwi (f, )y,

(ii1) ||30(U)|| < Wk(f7 U)p,

where k = [a] +

Lemma 4.4. ([4]) Let0 < B <a <2. If f € By(Ly), p>1,1 <1< oo, then

R (/0 ”Sa(tﬂ)qit) — o) {/O"(ua—B|Mn<u)|mdu}“3
= 0(1) {/07r (““5+3|Mn(u)|)"qldu}l_§.

Lemma 4.5. ([4]) Let0 <3 <a <2 and f € By(L,),p > 1,q = co then

sup (18 o>ty w)l]) = O,
0<t,ulm

Lemma 4.6. (i) Ny(y,t) = [ Mn(u)é(y,t, u),
(ZZ) wk(Trat) ||N71,(7 )”

5 Proof of the Main theorem
5.1 Case I:
Forl<g<oo,p>1,0<f<a<?2.

Proof. We have

2 sin g

selfr2) — f(2) = / "oy inEr g,

The Hausdorff matrix summability transform of sz (f;x) by t2(z), we get

tH (@) = f(@) = hnw{se(f;2) = f(2)}
k=0

n

%@(m,t) Z (Z) Ak (/01 zkda(z)> snik ;)¢ (:fnt%) Lt

k=0 2
1 Y gy e, sin (k)
— 27T<p(x,t)kz_0/0 (k)z (1-2) da(z)vdt. (5.1)

The (E, q) transform of I denoted by KF is given by

n

KET - @) = o Y (o et ) - 1)

k=0
~wra X (et [ [ () - a2
—(1+4q) “é( ) { ;/Oww(m,u)é/ol (i)z“(l—z)k_“da(z)Wdu}

( Replacing ¢ by u)
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= /077 0z (u) My, (u)dt. (5.2)
Let .
To(x) = KEH(z) — f(x) = / (e, ) My (). (5.3)

Using the definition of Besov norm, we have
152z, = 1A, + 118y @) = W1, + leon(Fs o -

1T Ollse s,y = ITaC, + lox (T ., (5.4)

Using Lemma 4.3(iii), we get
IT. Ol < / lo(u)l, (Mo ()| du < / Yok (f.10)p| M () . (5.5)
O

Employing Hélder inequality, we have

1T ()], <2 {/Ow (ua+%|Mn(u)|>q%l du}lé {/Oﬂ (W)qdu}; .

Making an appeal to Besov space definition , we establish

1701, = o0 {1 (U“*‘?ann)q%}l_é
- [O(l) {/0+ (UM%‘M"(“)D# du} ) +0(1) {{/“ (ua+%|Mn(u)l)# du} H

= O(1)(E + H). (5.6)
Using Lemma 4.1 in E of (5.6), we attain

E= {/0+ (wﬁ\Mn(u)Dﬁ du} _

Q=

z{(n—kl)qql/on+1

=0n+1)"* (5.7)
Emplying Lemma 4.2 in H of (5.6), we derive

H= {/ﬂ (ua+%|Mn(u)|)q%l du} _

n+1

1-3
=0(n+1)"" { uqql(o‘_l)_ldu}
(n+1)74 a>1
0(1) 4 (n+1)77, a<l (5.8)
(n+1)"og(n+ D]t a=1.
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So, we get

(n+1)71 a>1
IT.C)ll, = 0(1) § (n+1)77, a<l (5.9)
(n+ 1) log(n+ N)rt=4" a=1.
By using generalized Minkowskis inequality and Lemma 4.4, we have
1
T (wi(Ty, )\ dt ) @
To,o)ll = — | -
ol = { [ (2550 ) S
1
o /ﬂ- ||Nn(7t)||p I ﬂ !
1/ t8 t
u t,u)lly dt " L)l de) ?
/ M, ()l du {/ ||<p( )2 } / M, ()] {/ lp(-, ! i dt
a t
™ 1— E 17%
—om{ | <u“5|Mn<u>|q—1>du} om { [ )}
0 0
= O(1)(Fy + Hy). (5.10)
Now, (a +b)" < a" +b" for positive a,b and 0 < r <1 for r=1— % < 1. we have
n 1-1
B ={ [ @il
0
1 - -3
n+1 a—ﬁ _q
< + ) et
0 ==
= E11 + Eqo. (5.11)
Using Lemma 4.1, we have
1 1-4
" g g
B = {/ (w0 | My () 1du}
0
1 -3
n+1
= {/ (u*P(n+1))s 1du}
0
- 0{(n+ 1)‘““”%}. (5.12)
Using Lemma 4.2 in E15, we have
T 17%
By = {/ (uaﬂ|Mn(u)|)qq1du}
e
q 1-1
™ 1 ﬁ q
= a-B___ -
{/ (“ n 1>u2> d“}
nt1
(n+1)71a OK*B*%>1,
=0(1){ (n+1)~*tF+q, a-p-1<i, (5.13)
(n+ 1) tlog[(n+ ]t~ 7 a—pB— % =1
Combining (5.11)(5.12) and (5.13), we establish
(n+1)71, a—ﬂ—%>1,
By =0(1)4 (n+1)" s, a-p-1<u, (5.14)
(n+1)"tog[(n+ D]t~ a—p-1=1
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Now,

e[}
: { </o " /) (w45 (M)

n+1
= Hy1 + Hys.

Using Lemma 4.1 in Hy;, we derive

q 1_%
|)“}

1 1-1
1l = ¢
Hll = {/ (’U,ai’B+%|Mn(U)‘) ot du}
0

= {/On}rl (ua_[ﬂ'%(n—i— 1))ﬁ du}l_

= O{(n+1)"F},

Using Lemma 4.2 in Hi5, we obtain

"
- .1 ]
= {/nl+1 (u‘l Bty T 1)u2> du}
(n+1)71, a—p>1
=0(1)] (n+1)"o+8, a—B<1.
(n+ 1) log(n+ r]t=9", a—pB=1.
Combining (5.15), (5.16) and (5.17), we get
(n+1)71, a—p>1
Hy = 0(1)4 (n+1)"o+8, a—-pB<1.
(n+1)"log(n+ Va7, a—pB=1
From (5.10), (5.14) and (5.18), we obtain
(n+ 1)~ a=B-
ok (T, Mg = O1) § (0 +1)"FFF, a-p-1
(n+1)Mogl(n+ '~ a—p—1
From (5.4), (5.9) and (5.19), we derive
(n+1)71, a—pB—1
1Tl pg r,) = O] (n+ 1), a-pf-1
(n+1)"tlog[(n+ 1)z~ a—f— %
5.2 Case II
Forg=00,0<f8<a<?2.
ITal g2, = 1T, + (Tl 5 -
Using condition wy(f,t) = O(t*),t > 0 in (5.5), we have
27
70l = [ 270l (o)
om{A“mmmwm+/immmwm}
T

> 1,
<1,
=1.

> 1,
<1,
=1.

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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= O(l)[EQ + Hz]. (5.22)
Applying Lemma 4.1, we have

—(nt1) (5.23)

Using Lemma 4.2, we derive

T
1 T 1
S /L O‘u2du
T
(n+1)71 a>1
=< (n+1)79, a<l (5.24)
(n+1)"tlog(n + )7}, a=1.
An appeal to (5.22), (5.23) and (5.24), gives
(n+1)71, a>1
1T, = 0(1) ¢ (n+1)77, a<l (5.25)

(n+1)"og(n + 7], a=1.
Making an appeal to generalized Minkowaskis inequality and Lemma 4.6, we derive
lwr(Tos ) 5,4 = fgg(t‘ﬁwk(Tm t)p)

= sup(t™" [ N (-, 1)]1,)
t>0

1

1 2m P

~ sup [t_ﬁ ( / Mn(u)|<p(x,t,u)du|pdx> ]
t>0 2m 0

1 P 27 1
sup [0 () [ 0 @Plote )Pt ]

t>0 2m 0
= [ (w2 et ) 01, i
0 t>0

_ 0(1)[ =B M,, () |du

=T 71'
_ o) (/ +/ ) uo‘_ﬁ|Mn(u)|du]
0 TEas
= O(l)(Eg + Hs). (5.26)
Using Lemma 4.1 in Fj3, we have
s
Es = / u“ P M, (u)|du = O{(n +1)*#}. (5.27)
0

Making an appeal to Lemma 4.2 in Hs, we derive
s
H; = u®P| M, (u)|du
1

n+1

1 ™
= 05—6—2
0(1)n+1/1 u du

n+1
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n+1
=0(1)< (n+1)"«F, a—pg<1 (5.28)
n+1

An appeal to (5.26), (5.27) and (5.28) gives
(n+1)71 a—p>1
[wi (T, Ml 0o = O1) § (n+1)7F, a—pB<1 (5.29)
(n+ 1)~ og(n + 7], a—pB=1.
Emplying (5.21), (5.25) and (5.29), we establish

(n+1)71, a—f—3>1,
||Tn(')HB§C(Lp) =0(1)q (n+ 1)—a+/3+%’ o—fB— % <1, (5.30)
(n+1)"tlog[(n+ 1)) a—p8— % =

6 Some Proposition
The following corollary can be derived from our main theorem.

Corollary 6.1. The best Error approximation of f in the Besov space Bg(Lp),p > 1,1 < qg < o0, by
(E,q)(C,8) means of its Fourier series is given by

(n+1)71, a—f—2>1,
Eulf) = ITaC)lgp e,y = O) 4 (n+ 1)+ a-p-tlen, (61)
(n+1)"tlog[(n + 1)#]1*‘171 a—pf—-L=1.

q
Remark 6.1. Corollary 6.1 can be further reduce in (E,1)(C,6) means, (E,q)(C,1) means and (E,1)(C,1)

means.

7 Conclusion

Many researchers use various summability means to obtain the degree of approximation of functions in various
spaces such as Lipschitz space, Holder space etc. Because the Besov space generalizes to more elementary
function, this space is very effective at measuring the regularity of functions. Our result generalizes many
known results obtained using the Lipschitz space.
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valuable suggestion, to bring the paper in present form.
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